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Problem of Classical and Nonclassical Probabilities 
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A characterization of classical and nonclassical probabilities expressed in terms 
of some inequalities between multidimensional or S-probability is given. A new 
criterion (not referring to correlation probabilities) for nonclassicality of the 
range of a complete S-probability measure on an event system is proposed. 

1. INTRODUCTION 

In approaches to the foundations of quantum mechanics the notion of 
event is often taken as a primitive ingredient, and the logical structure of 
events is given from the outset, or assumed axiomatically (this is the case in 
defining a propositional system in quantum logic). However, it appears 
closer to experience to focus attention on the measured probabilities of given 
observations in various states of the physical system and then to derive 
from these probabilities the logical structure of events which appear in the 
description of the physical system under consideration. 

This last attitude raises the problem of deciding whether the empirically 
obtained probabilities have a classical or a nonclassical nature; more spe- 
cifically, whether they are contained in the range of a classical or a nonclass- 
ical probability measure. This is the problem considered in this paper: we 
shall provide some new criteria about the classicality or nonclassicality of a 
set of probabilities. These criteria are an addition to what has been found 
by Accardi (1983, 1986), Gudder and Zanghi (1984), and Pitowsky (1989). 

We shall provide a characterization of probabilities in terms of the 
multidimensional probability, or S-probability (physically interpreted as a 
family of probabilities labeled by the states of the physical system), a notion 
which seems to be especially suitable for expressing the properties which we 
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are calling classical or nonclassical. We shall omit the proofs of  our results: 
for them we refer to another recent paper (Beltrametti and M~czyfiski, 
1991). 

2. DEFINITIONS 

We need first some definitions. 
Let S be a nonempty set to be physically interpreted as the set of  states 

of  the physical system. By an S-indexed probability, briefly S-probability, 
we understand any function p : S -~ [0, 1], i.e., any p ~ [0, 1]s. If  S = { a } is 
a one-element set, we call an S-probability simply a probability. If  S = 
{a~ . . . .  , a,} is an n-element set, then an S-probability can be identified 
with a sequence of  values ( p ( i ) , . . . ,  p(,)), i.e., with a vector in the n-dimen- 
sional space R". Hence p can be viewed as an n-dimensional probability or 
n-valued probability. We denote the set of  all S-probabilities by P(S), i.e., 
P(S)-- [0, 11 s. 

Let p, q~P(S). Since p and q are real-valued functions, we can define 
a partial order relation in P(S) by p<q if and only ifp(x)<q(x) for all 
x E S. By 0 and 1 we denote (with common abuse of  notations) the functions 
on S which take the values 0 and 1 only, respectively. If  p, qeP(S), then 
p + q is always defined as the sum of  functions p and q, although it may not 
belong to P(S). I fp+qeP(S),  i.e., i f p + q < l ,  then we say tha tp  and q are 
orthogonal. A triple of  S-probabilities p~, p2,173 is said to be a triangle, 
denoted by A(pl,p2,p3), i f p ; + p j < l  for iCj, i , j = 1 , 2 , 3 .  I f p  is an S- 
probability, then 1 - p  is always an S-probability, too. We write p ' =  1 - p .  

By an event system L we understand a triple L = (L, < ,  '), where L is 
a set, < a partial order in L, ' a mapping a-~a '  from L into L such that 
(L, < ,  ') is an orthomodular,  orthocomplemented, partially ordered set (an 
orthoposet). The elements of  L are called events. 

An orthoposet (L, < ,  ') satisfies the following set of  axioms: 

(i) a"=a for all aeL 
(ii) a<b implies b'<a' for all a, b~L 

(iii) if at ,  a2 . . . . .  a, is a sequence of members of  L for which ai<a~ 
for all ir then the least upper bound a~ v a 2 v "  �9 �9 v a ,  exists in 
(L, _<) 

(iv) ava '=bvb '  for all a, b~L(ava' will be denoted by 1) 
(v) a _< b implies b = a v (a v b')' 

By a classical event system we understand an event system L which is 
a Boolean algebra with respect to the order _< and complementation ' (i.e., 
it is a complemented distributive lattice). 
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Let L = (L, < ,  ') be an event system, S a nonempty set. By an S-prob- 
ability measure on L (or briefly on L) we understand any map 

p: L - - , e ( s ) = [ 0 ,  1] s 

with the properties 

p(O) = O, p(1) = 1 

p(a ' )= 1 - p ( a )  for all aEL 

p(al v a2 v .  �9 �9 v a.) =p(al )  +p(a2) +" �9 �9 +p(a.)  

whenever a ;<  a~ for i r  

Hence, for every a e L ,  p(a) is an S-probability, i.e., a function from S 
into [0, 1], and p(a)(a)  is a probability, i.e., a number between 0 and 1. We 
write p"(a) instead o fp (a ) (a ) .  We have as a corollary that for every a e S  
the map a--*p'~(a) is a probability measure on L. 

By an event S-probability space we understand a pair (L, p) where L is 
an event system and p an S-probability measure on L. 

Let p be an S-probability measure on L. We say that p is complete if 
a<b.*~p(a) <p(b) for all a, beL .  

Let K be a set of  S-probabilities. We say that K is representable if there 
is an event S-probability space (L, p) such that 

K_~ {p(a) : a~L}  

We denote this embedding mapping by tp. We call (L, p, q~) a representation 
for K. 

Observe that if (L, p, q~) is a representation for K, then a < b in K always 
implies q~(a) < ~0(b) in P(S) .  Similarly, a + b = c implies tp(a) + tp(b) = tp(c). 
Hence the embedding preserves all existing relations arising from the order 
and the complementation structure in K. In other words, the embedding is 
without any additional assumption an orthoposet isomorphism. This shows 
that S-probabilities intrinsically reflect the structure of relations between 
objects described by them. The structure of  order and complementation is 
naturally contained in any set of S-probabilities. 

We say that a set of probabilities K is classically representable if there 
is a representation (L, p, tp) for K such that L is a classical event system. 

By a correlation sequence we shall understand an indexed sequence of 
S-probabilities K =  (p~, P2 . . . . .  P,,, �9 �9 �9 Po . . . .  ) where 1 < i, j < n, i < j  (not 
all pairs i,j,  i<j ,  need appear). We shall say that this sequence is consistently 
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representable if there is a representation (L, p, tp) for K and a sequence of 
pairwise compatible events (a~ . . . . .  a~) in L such that 

Pi=P(ai) for i=  1, 2 . . . .  , n 

p~ =p(ai ^ aj) 

whenever the pair i, j appears in K. 

3. MATHEMATICAL RESULTS 

If we consider the simplest correlation sequence (p j, P2, P12) of S-prob- 
abilities we have the full equivalence of the following four conditions: 

(I) K is consistently representable. 
(II) The following inequalities hold: 

0_<pl2<pj _< 1, 0<p~2_<p2 < 1, pj+p2-p~2<_l 

(III) There exist q~, q2, q3~P(S), q~ +qE+q3--  < 1, such that 

Pl =ql  +q3, P2=q2+q3, p12 =q3 

(IV) K is consistently representable in a classical event space. 

The proof of this fact is essentially contained in Pitowsky (1989, 
Theorem 2.3), or, more completely, in Beltrametti and M~czyfiski (1991, 
Theorem 1). 

Thus we see that if we consider only two probabilities Pl and P2 with 
their correlation p~2 we have no criterion to distinguish whether they come 
from a classical or a nonclassical situation: if the sequence (pl,  p2,p12) is 
consistently representable, then it is always classically representable. 

The possibility of distinguishing between the classical and the nonclass- 
ical case comes only if we consider at least three probabilities pl ,  P2, P3 with 
their correlations. For a sequence (pl,  p2, p3, pl2, p~ 3, p23) of S-probabilities 
we have indeed that the following conditions are equivalent: 

(I) K is classically representable. 
(II) The following inequalities hold: 

O<_pu<p~<l, O<_p~<_py<l, 1 <i<j_<3 

p~+pj--pij< 1, 1 <_i<j<3 

PJ -Pl2 --p13 +P23 ~ 0  

p2-p12-p23 +PI3-->0 

p3 --p13 --P23 +P12 ~ 0 

Pl +P2 +P3 --P12 --Pl3 --P23 ~ 1 
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(III) There exist ql, q2, q3, q4, qs, q6, q 7 ~ e ( s ) ,  ~ = l  qi< 1, such that 

pl = ql + q2 + qn + q7 

P2 = q2 + q5 + q6 -1- q7 

p3 = q3 --k q4 + q6 q- q7 

p12 = q2 + q7 

p13 = q4 + q7 

p23 = q6 q- q7 

The proof  of this fact is also essentially contained in Pitowsky (1989, 
Theorems 2.3 and 2.4), or, more completely, in Beltrametti and M~czyfiski, 
(1991, Theorem 2). 

Notice that the last four inequalities in (II) are Bell's inequalities. Thus 
we have that if for a correlation sequence (p~, p2, p3, pl2, p13, P23) Bell's 
inequalities are violated, then the sequence is not classically representable. 
As an example, take the sequence of probabilities (1/2, 1/2, 1/2, 1/8, 1/8, 
1/8): the last of  Bell's inequalities in (II) does not hold, so that this probabil- 
ity sequence does not admit a representation in a classical event space; it 
admits, however, a Hilbert space representation and it can be physically 
related to a system formed by a pair of  spin-1/2 particles (Pitowsky, 1989). 

The above criterion for classical or nonclassical representability cannot 
be directly generalized to larger sequences of  S-probabilities (Pitowsky, 
1989). Therefore, to deal with such a generalization one has to take another 
way. The following two theorems, whose proof  is given in Beltrametti and 
M~czyfiski (1991, Theorems 3 and 4), provide an answer to the problem. 

Theorem 1. Let K be a set of  S-probabilities. Then the following condi- 
tions are equivalent: 

(I) K is the range of a complete S-probability measure on some event 
system L. 

(II) K has the properties 

(i) 0~K 
(ii) p ~ K = ~ I - p ~ K  

(iii) A(p j ,p2 ,p3 )~K~p~  + p 2 + p 3 e K  

i.e., K contains 0 and is closed with respect to subtraction from 1 and sums 
of triangles. 

Theorem 2. Let K be a set of  S-probabilities. Then the following condi- 
tions are equivalent: 
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(I) K is the range of a complete S-probability measure on some class- 
ical event system L. 

(II) K has the properties 

(i) 0 e K  
(ii) p e K ~ l - p e K  

(iii) A(pl,p2,p3)eK=e, pl +p2+P3eK 
(iv) for any p j, P2 e K there exists a triangle ~ (q~, q2, q3) in K such that 

p~ = q~ + q2 and p2 = q2 + q3. 

While Theorem 1 provides us just a criterion to verify whether a set of 
S-probabilities is the range of a complete probability measure on an arbitrary 
(possibly nonclassical) event system, Theorem 2 gives the key to verify 
whether the underlying event system is classical or not. 

As a corollary [whose proof is again contained in Beltrametti and M~tc- 
zyfiski (1991)], we have the following statement that applies to any S-prob- 
ability sequence K which is the range of a complete S-probability measure 
on some event system L: 

K is nonclassical if and only if there exists a pair (p~ ,p2) of members 
of K such that whenever ql <q2 and pl <qJ +q2 for some q~, q2eK, then 
pl --P2 ~ ql +q2-- 1. 

Such a criterion can be easily handled and has the advantage of  being 
easily programmed for a computing procedure. 

4. EXAMPLES 

As anticipated, an S-probability will be physically interpreted as a set 
of probabilities (of occurrence of some experimental result) corresponding 
to different states of the physical system under consideration, and S will be 
understood as the set formed by these states. 

The simplest example can be obtained assuming that S contains just 
one state a (so that S-probabilities are simply numbers in [0, 1]) and that a 
dichotomic observation is made, getting, say, K =  {0, 1 }. This is clearly a 
classical system, isomorphic to the two-element Boolean algebra. 

Still assuming S = {a}, suppose that a three-valued observation is made 
with K =  {0, 1/2, 1 }. This sequence of S-probabilities cannot be represented 
as isomorphic to a system of events, for it misses the property (iii) of Theo- 
rem 1. In other words, this K does not determine the structure of  events 
underlying the experiment; the set of states for which we perform observa- 
tions is not sufficient to determine events. 

If  S =  {al ,  a2} is a two-element set, then S-probabilities are vectors in 
R 2 with coordinates in [0, 1]. Take as an example K =  {(0, 0), (1, 0), (0, 1), 
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(1, 1)}. This is also a classical system isomorphic to the Boolean algebra 
A = {0, a, a', 1}. We could interpret this structure by thinking of a coin with 
two faces A and B, viewing al and a2 as the states in which A or respectively 
B is up, and identifying our probabilities with the probabilities of seeing 
nothing (event 0), of seeing A (event a), of seeing B (event a'), and of seeing 
anything (event 1). 

As another example we could consider S = {al, a2, a3} and take 

K= {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), 

(1, l, 0), (1, 0, 1), (0, 1, 1), 1, 1, 1)} 

It is easy to verify that the conditions (i)-(iv) of Theorem 2 are satisfied 
and consequently we have a classical system. This example could be easily 
generalized to n states. 

To have a simple finite example of a nonclassical system, consider S = 
{al, ~t2} and the system of S-probabilities defined by 

Ka={(0,0), (1, 0), (0, 1), (3, 1 - 3 ) ,  ( 1 - 3 ,  3), (1, 1)} 

with any 0 < 3 < 1 / 2 .  It is an easy exercise to verify that the system Ka 
satisfies conditions (i)-(iii) of Theorems 1 and 2, but not condition (iv) of 
the latter, so it is a nonclassical system of S-probabilities, still representable 
as an event system. The corresponding orthocomplemented partially ordered 
set L=(L,  <,  ') is isomorphic to the lattice M02= {0, a, a', b, b', 1} (there 
are no order relations between a and b, as well as between a and b'). This is 
the simplest orthomodular lattice which is not a Boolean algebra. 

We can give a physical interpretation of this situation by considering, 
for instance, the polarization of a photon and viewing 31 and 32 as the states 
of linear polarization along two orthogonal axes, say x and y (with the 
photon propagating in the z direction). The S-probability (1, 0) could then 
be interpreted as coming from the probability of transmission of the photon 
through a polarizer oriented along the x axis (and perpendicular to the z 
axis): indeed, the probability of transmission is 1 if the state is a~ and 0 if 
the state is 32. Similarly, the S-probability (0, 1) would come from the 
transmission through the polarizer oriented along the y axis. The S-probabil- 
ity (3, 1 - 3 )  would correspond to the transmission probabilities through a 
polarizer oriented along some new axis x' in the (x, y) plane: indeed, accord- 
ing to the Malus law, if 7 is the angle between x and x', the transmission 
probability is 3=cos2 ~ , for the state al and cos2(tr/2-~,) = 1 - 3  for the 
state 32. Similarly, the S-probability ( 1 - 6 ,  3) would correspond to the 
transmission probabilities through the polarizer oriented perpendicular to 
the x' axis. Should the angle 7 be ~r/4, we would have 3 = 1/2 and the 
S-probabilities (3, 1 - 3 )  and ( 1 - 3 ,  3) would coincide, thus losing their 
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capability of defining unambiguously a positioning of  the polarizer. The S- 
probabilities (0, 0) and (1, 1) correspond as usual to observing nothing and 
observing anything in both states. 

Another obvious example of  a nonclassical system of  S-probabilities is 
obtained by taking for S the unit sphere of  a separable Hilbert space H. For  
every orthogonal projection P on H we define f p ( a ) =  (Pa,  a)  for all a~S, 
and the set K =  { fp :P  a projection} is a nonclassical system of  S-probabilit- 
ies. This system is isomorphic to L(H) ,  the lattice of closed subsets of  the 
Hilbert space H, and is interpreted as the logic of  the Hilbert space quantum 
mechanics. 
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